Diffeomorphic approximation of planar Sobolev homeomorphisms in rearrangement invariant spaces
نویسندگان
چکیده
Let Ω ⊆ ℝ 2 be a domain, let X rearrangement invariant space and f ∈ W 1 (Ω, ) homeomorphism between (Ω). Then there exists sequence of diffeomorphisms k converging to in the ).
منابع مشابه
On the Bi-sobolev Planar Homeomorphisms and Their Approximation
The first goal of this paper is to give a short description of the planar bi-Sobolev homeomorphisms, providing simple and self-contained proofs for some already known properties. In particular, for any such homeomorphism u : Ω → ∆, one has Du(x) = 0 for almost every point x for which Ju(x) = 0. As a consequence, one can prove that ∫
متن کاملPlanar Sobolev Homeomorphisms and Hausdorff Dimension Distortion
We investigate how planar Sobolev-Orlicz homeomorphisms map sets of Hausdorff dimension less than two. With the correct gauge functions the generalized Hausdorff measures of the image sets are shown to be zero.
متن کاملApproximation by Trigonometric Polynomials in Weighted Rearrangement Invariant Spaces
We investigate the approximation properties of trigonometric polynomials and prove some direct and inverse theorems for polynomial approximation in weighted rearrangement invariant spaces.
متن کاملSubspaces of Rearrangement-invariant Spaces
We prove a number of results concerning the embedding of a Banach lattice X into an r. i. space Y. For example we show that if Y is an r. i. space on [0, oo) which is/7-convex for some/? > 2 and has nontrivial concavity then any Banach lattice X which is r-convex for some r > 2 and embeds into Y must embed as a sublattice. Similar conclusions can be drawn under a variety of hypotheses on Y; if ...
متن کاملPolynomial Approximation of Functions in Sobolev Spaces
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2021
ISSN: ['1262-3377', '1292-8119']
DOI: https://doi.org/10.1051/cocv/2021080